Homework Day 1

OOI Preliminary Design Review December 4-7, 2007 Arlington, VA

Project Team

How Will OL ensure IOs buy into MREFC standards etc?

- IO's are invested in success of OOI.
- Universities are putting in their own funds.
- Ts & Cs in IO subawards, statements of work etc require implementation of MREFC process. IO's understand compliance with process is necessary.
- Mechanisms are in place to monitor, evaluate, and correct performance, and terminate subawards if necessary.
- OL will continue to provide training and teaching
- Joint selection of tools and work methods ensures alignment with standards

Scenarios

- Change Control Process for de-scope decisions
- RSN Moorings: example of Level 2 re-allocation

Managing schedule variance

- Behind schedule: If on critical path, shorten schedule by adding resources to make task go faster (uses contingency)
- 11 nodes with incremental commissioning; decreases impact of "standing army"
- Unlink dependencies by reducing requirements example of glider deployment and biofouling mitigation design work. or fast track some other work

Coordination of E&O

- Detailed presentation in Breakout I (Programmatic)
- Adhere to Guiding Principles of NSF/GEO
- Edu infrastructure via subaward
- Management structure to integrate activities (.5 FTE in Project Office)

Schedule

Legend	FY 2008			FY 2009			FY 2010		FY 2011		FY 2012				FY 2013									
Design/Development				1																				
			j	8 8				60 60				10 10				11				12				13 13
Build/Manufacture				Jul (Jul				bul .				Jul				lul sep				Jul Sep
Implementation				, 0)				, 0)				, 0)				, 0)				2 05				, 0)
Test/Deploy/Commission	0.1			0.4	0.4		0.0		0.1	0.0	0.0	0.1	0.1		00	0.1	0.1		•••		·		0.0	
	Q1	Q2	Q3	Q4	Q1	QZ	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Cyberinfrastructure				R-1 [Data Mo	amt. Di	stand	Contro																
								R-2	Manage	d Data	Acqui	sition												
												R-3	Integra	ted Data	Analy	vtic s								
														R-4 In	tegrat	ed Mo	deling	Networ	k					
																		R -5 I	nteract	ive Ob:	servato	ry Sys		
																				Syste	am Acc	ept Tes	t	
										CIM	arine	Integra	ation											
										CI/ 0	Coastal	Integra	tion	CI/R	SN Inte	egratio	n							
										CI/ 0	Global I	ntegrati	ion											
				Exte	rnal Ob	servat	ory Inte	egratio	n - Nep	tune-C	anada,	10 O S,	WMO/I	00										
Coastal Scale Observatory				Deve	elopme	nt CSN																		
				Deta	il Desig	n & SE	- Endu	rance A	rray, C	entral C	regon	Line												
				Deta	il Desig	n & Sys	stems E	ing - Pio	oneer A	.rray - N	liddle A	tlantic I	Bight											
								Impl	ementa	tion C	5 N													
									Endu	irance A	Array - (Central	Oregor	Line										
								Pion	eer Arra	ay - Mid	dle Atla	intic Big	ght/Ou	ter Conti	nental	Shelf								
Regional Scale Observatory				Deve	elopme	nt RSN							-											
				Back	bone C	ables																		
					Warrent	on Shor	e Sta																	
					Pacific (City Sho	re Sta																	
				Deta	il Desig	n, Low	Voltage	Node	/JBox											<u> </u>				
						Prima	ary / Se	condar	y Node	S –														
									Μοοι	ing Des	sign			-						<u> </u>				
										Seco	ndary (Cable												
								Sens	sorDes	ıgn											<u> </u>			
						Imple	ementa	ition R	5 N			la stall D		Duilt				la st. 1					Davi	
						Build	-out Wa	arrentor	1 35			install B	BUDI	Build		ae/JB	OX OX	Insta	U/Com	mission		ues / J	BOX	
						Build	-out Pa		tyss					Build	Moori		es	Instal	1/00m	Moor	i Pri / S		es	
														Secon	dary C		esemb			WICOI		an		
														Senso	r Integ	ration	/Test	167 1631		Sono		omonto	tion	
														001130	n integ	ration	/ 1031	I 1		30113		Sillenta	1011	
Global Scale Observatory				Deve	lonme	nt GSN																		
				Deta	il Desia	n & Svs	s Eng	-	-	1			r											
				Statio	on Papa	a	9																	
				Irmin	der Sea	- a																		
				Southern Ocean 55°S																				
									lm p l	em en ta	tion G	SN												
							Stati	Station Papa																
									Irm in	Irminger Sea														
															South	nern Oo	cean 5	5°S						

Impact of Delaying Construction until after another review (FDR)

- Upon reviewing the May 2007 LFM, criteria for FDR, the only item that we don't have is Final Construction-Ready Design
- Incremental pre-construction reviews are built into our schedule (blue lines)
- Burden of work planned under MREFC gets shifted to R&RA; If we don't implement in CGSN/RSN/CI or do Education or Environmental work until 6/11, it will cost \$60M on R&RA
- CI has special scheduling issues

Down Side of Schedule Impact?

- Pushes implementation out because ALL installation is delayed (distributed system).
- Increases marching army cost (TBD)
- Inflation erodes buying power by at least \$20M
- Delaying on RSN cable plant we lose early risk reduction.
- Institutional contributions have been turned on but won't be sustained.
- Community support will erode.

Question 4 Response (CI)

- System Engineering process & Integrated Product Team design used to ensure consistency & entrainment of architectural approach, design & deliverables
- Work Breakdown Structure & Spiral Development model used to establish scope of work & reviews (Anchor Point Milestones reviews: LCO, LCA, IOC)
- OOI's Requirement & CIIO's Spiral Development processes used to establish & refine Interface Agreements between IO's and between the CI subsystems
- Monthly EVM reporting and Anchor Point Milestone reviews used to continuously evaluate subawards' cost & performance to plan
- CIIO's Risk & Opportunity Management process used to determine mitigation plan & corrective action
- OOI's Configuration Management process used to activate corrective action

Global Scale Nodes

Location	Conceptual Network Design	Preliminary Network Design			
Station Papa	1 acoustically linked discus buoy	1 acoustically linked discus buoy (NOAA)			
	1 subsurface mooring	1 subsurface mooring			
		2 flanking subsurface moorings			
		5 gliders			
Irminger Sea	1 acoustically linked discus buoy	1 acoustically linked discus buoy			
	1 subsurface mooring	1 subsurface mooring			
		2 flanking subsurface moorings			
		5 gliders			
55 S Southern Ocean	1 spar buoy with EO cable and seafloor junction box	1 acoustically linked discus buoy			
	1 subsurface mooring	1 subsurface mooring			
		2 flanking subsurface moorings			
		5 gliders			

Global Scale Nodes

Location	Conceptual Network Design	Preliminary Network Design			
East Pacific Rise	 spar buoy with EO cable and seafloor junction box subsurface mooring 	Eliminated			
Mid-Atlantic Ridge	1 discus buoy with EOM cable and benthic node1 subsurface mooring	UPSCOPE Extended Draft Platform 1 subsurface 2 flanking subsurface 5 gliders			
ALOHA	1 EM Subsurface	Eliminated			
Argentine Basin, South Atlantic	 acoustically linked discus buoy subsurface mooring 	Eliminated			

Global Scale Nodes

Location	Conceptual Network Design	Preliminary Network Design
South Pacific Subtropical Gyre	1 acoustically linked discus buoy	Eliminated
	1 subsurface mooring	
Peru Basin	 1 discus buoy with EOM cable and benthic node 1 subsurface mooring 	Eliminated
Global Pioneer	4 subsurface moorings 4 gliders	Eliminated

Coastal Scale Nodes

Location	Conceptual Network Design	Preliminary Network Design			
Endurance Array – Oregon	3 paired, cabled surface/subsurface moorings with benthic nodes (25, 80, 500 m) 2 taut surface buoys (50, 150 m) 6 gliders	2 paired, cabled surface/subsurface moorings with benthic nodes (80, 500 m) 1 paired surface/subsurface with multi-function node (no met) (25 m) 6 gliders			
Endurance Array Washington	3 paired surface/subsurface moorings with junction boxes (25, 80, 500 m) 2 taut surface buoys (50, 100m) 6 gliders	UPSCOPE 2 paired, surface.subsurface moorings (25, 80m)			
Southern California Line	2 paired surface/subsurface moorings with junction boxes (80, 500 m)	Eliminated in 3/8/07 CND			

Coastal Scale Nodes

Location	Conceptual Network Design	Preliminary Network Design
East Coast Endurance Array	Cable two towers with benthic nodes; subsurface moorings, HF radar	Eliminated in 3/8/07 CND
Pioneer Array	4 paired surface/subsurface moorings 5 subsurface moorings 3 AUVs; 2 docking stations 12 gliders	3 paired surface/subsurface moorings with multi-function nodes 4 subsurface moorings 3 AUVs; 2 docking stations 10 gliders

Regional Scale Nodes

Location	Conceptual Network Design	Preliminary Network Design
Cable Configuration	Ring	Star
Cable Length	1500 km	1200 km
Nodes	5 Primary Nodes (fifth is extension of Newport Line)	5 Primary Nodes (fifth is mid-plate on Axial)
Moorings	6 subsurface	2 subsurface

Cyberinfrastructure

Function	Conceptual Network Design	Preliminary Network Design
Knowledge Management	Part of Design	UPSCOPE

Joint Project Governance

- Working as an integrated team: Joint team has shared core sensor lists, concluded interface agreements, arrived at economies of scale, agreed on working tools and standards as discussed in the CM Plan
- IO's spent years as unpaid community advisors developing the vision for OOI and want to make it happen
- IO's are embedded in change control boards which act by consensus

Science versus Maintenance Trade-off Decisions

- Nodes are designed so that "all lights won't go out"
- Maintenance is decided on a yearly basis (in annual work plans)
- No heroic maintenance
- MREFC failure prior to commissioning is a contingency issue
- In general, science is favored over maintenance
- Decisions in real time on cost of "not maintaining"

Transition to New Management

- IO subawards have 5 one-year options for operations management in Years 6-10
- One year overlap in operations will be needed
- Ahead of the transition, NSF can add scope to Ocean Leadership to develop a transition plan
- Technical Data Package is specified at internal FDR and "as built"
- Metrics in our operations plan can be used to service level agreements
- OL can recompete IO awards, or NSF can recompete in entirety

Cost Minimization

- Used minimum cost model developed by the ORION CI Committee as baseline
- Centralized CI CyberPoPs system hardware & operation costs contracted as services
 - Leveraging the operational footprint of the large national cyber facilities
 - SDSC, NCAR, TeraGrid, future PetaScale Facility
 - Amortizing their labor pool for 24/7 support at a fraction of an FTE baseline
- Operating model based on Amazon's services
 - Simple Storage Solution, "S3"
 - Elastic Computing Cloud, "EC2"

Cost Minimization

- System is designed for distributed "lights-out" management.
- System components will be supervised by automated management agents
- Software system upgraded remotely.
- Leverage CI personnel at Marine IOs for on-site hardware maintenance and upgrades.
- Use software components which have other sources of development and maintenance support.

Portability of Platform

- Service based Infrastructure contracts with NSF Resource Centers
- Distributed Operations Management
- All data online distributed across national not project infrastructure
- Only fixed assets are the CyberPoPs located within the Marine IO operating environments.

Where Does Buck Stop for the Getting Science Out?

- Science community development is part of our job. If in 5 years the US science community is not interested in using the infrastructure, project team has failed.
- Community must be nurtured to put their experiments on the OOI infrastructure.
- Each IO views that it has outreach responsibility to science community.