Ocean Observatories Initiative

Pioneer Array Micro-Siting Process Meeting

URI Coastal Institute – October 5, 2010

Al Plueddemann

OOI Project Scientist, Woods Hole
Oceanographic Institution
Pioneer Array

- Multi-platform, multi-scale
- Fixed and mobile assets
- Integrated with regional observing assets

Plueddemann, Trowbridge and Sosik (WHOI)
Middle Atlantic Bight

- Persistent advection of cold, fresh water from the north
- Fresh water input from a series of rivers along the coast
- Influence of Gulf Stream rings and meanders from the south
- Complex frontal zone at the shelf-break

Plueddemann, Trowbridge, and Sosik (WHOI)
Ecosystem Dynamics

- The shelfbreak front is a biological as well as a physical property boundary.
Marine Habitats

• The shelfbreak and coastal zone are the most important marine habitats in the MAB

• The shelfbreak has highest diversity of marine mammals in the U.S. Mid-Atlantic EEZ

Natural Resources Defense Council (2001)
Frontal Dynamics

- The front is distinguished by the transition from cold, fresh shelf water to warmer, saltier slope water
- Surface-intensified jet, near the 150 m isobath
- Mechanisms of cross-front exchange are largely unknown

Linder and Gawarkiewicz (1998)
Shelfbreak processes

Weather & climate forcing

- Mesoscale & submesoscale physical response

- Ecosystem response
Climate Connections

NAO affects atmospheric and oceanic circulation

Greene and Pershing (2007)
High-latitude shifts influence mid-latitude ecosystems

Greene and Pershing (2007)
Pioneer Array

- Full water column
- Cross-front resolution
- Power-generating buoys
- Multi-function nodes
- AUV docks

Plueddemann and Cook (WHOI)
Surface Mooring

• Buoy (with telemetry to shore)
 – Surface meteorology
 – Waves
 – pCO2 (air and sea)

• Subsurface
 – Temperature and salinity
 – Dissolved oxygen
 – pH
 – Water velocity
 – Turbidity
 – Optical properties
 – Chlorophyll, organic matter
 – Nitrate
Benthic Platform

• Multi-Function Node
 – Temperature and salinity
 – Water velocity
 – Dissolved oxygen
 – Turbidity
 – Acoustic zooplankton sensor
 – Connection for additional sensors

• AUV dock
 – Inshore and Offshore sites
 – Offload data and recharge AUV
Wire-Following Profiler

- Buoy
 - Telemetry to shore
- Subsurface profiling body
 - Temperature and salinity
 - Dissolved oxygen
 - Water velocity
 - Turbidity
 - Optical properties
 - Chlorophyll, organic matter
- Lower instrument cage
 - Water velocity profile
Surface-Piercing Profiler

- Profiling Body
 - Telemetry to shore
 - Temperature and salinity
 - Dissolved oxygen
 - pCO2 (water)
 - Water velocity
 - Turbidity
 - Optical properties
 - Chlorophyll, organic matter
 - Nitrate

- Bottom frame
 - Water velocity profile
Gliders and AUVs

- **Gliders**
 - Temperature, salinity and pressure
 - Dissolved oxygen
 - Water velocity
 - Turbidity
 - Optical properties
 - Chlorophyll, organic matter

- **AUVs**
 - Temperature, salinity and pressure
 - Dissolved oxygen
 - Water velocity
 - Turbidity
 - Optical properties
 - Chlorophyll, organic matter
 - Nutrients
Pioneer Infrastructure*

Moored Array
30 x 10 km
Site spacing
6-8 km cross
10 km along

AUV Region
110 x 80 km

Glider Region
150 x 130 km

* Crosses indicate representative locations only – precise locations are not yet determined

Plueddemann (WHOI)
Pioneer Mobile Assets: Gliders

Typical glider missions
6 gliders running simultaneous transects
150 km cross-shelf in 1 week
2000 km total track length
3 mo endurance
Pioneer Mobile Assets: Autonomous Underwater Vehicles (AUVs)

Typical AUV missions
2 AUVs running simultaneous transects
80 km cross-shelf in 12 hr
150 km total track length
24 hr mission
7 day repeat

Plueddemann (WHOI)
Pioneer
Fixed Assets: Moored Array

North/South extent 15 nm
East/West extent 5 nm

Distance between moorings
3.5 nm to 6 nm

Buffer Zone Radius 0.5 nm

Distance between Buffer Zones
2.5 nm to 5 nm – see chart

* Crosses indicate representative locations only; precise locations are not yet determined

The gray contours are spaced at 10 m (5 fathoms) intervals, the red contours at 50 m (27 fathoms), and the blue contours at 100 m (54 fathoms). Contours at 150, 500, and 1,000 m (82, 273, and 547 fathoms) are black. Crosses mark proposed mooring sites. The circles around each mooring site represent a proposed buffer zone of 0.5 nautical mile.
Moored Array Micro-siting

Requirements

• Span the shelfbreak front
• Resolve characteristic frontal features
• Avoid features not associated with the frontal system
• Use AUVs to identify features surrounding the moored array
• Maintain a buffer zone around each mooring site
• Avoid submarine cables

Plueddemann (WHOI)
Moored Array Micro-siting

Requirements

• Span the shelf break front
 – Occupy multiple locations across the shelf from 55 fm to 275 fm
 • The frontal system is seldom found further inshore than 55 fm
 • The equipment is limited to 330 fm maximum depth
 – Occupy a site within the relatively cold, fresh water characteristic of the continental shelf – inshore of the shelf break front
 – Occupy a site within the relatively warm, salty water characteristic of the continental slope – offshore of the shelf break front
 – Occupy a site within the shelf break jet (at the 110 fm line +/- 2.5 nm inshore or offshore)

Plueddemann (WHOI)
Moored Array Micro-siting

Requirements

• Resolve characteristic frontal features
 – Maintain mooring spacing less than or equal to the feature scale in the frontal zone (5 nm)
 – Maintain moorings within +/- 1 nm of a straight line across the shelf
 – Occupy a site eastward (upstream) of, and at the same depth as, the inshore site
 – Occupy a site eastward (upstream) of, and at the same depth as, the offshore site

Plueddemann (WHOI)
Moored Array Micro-siting

Requirements

• Avoid features not associated with the frontal system
 – Locate the array at least 8 nm (1.5 times the feature scale) downstream of canyon
 – Locate the array in a region with similar cross-shelf bathymetry for +/- 10 nm east and west of the center of the array

• Use AUVs to identify features surrounding the moored array
 – Locate moorings at least 8 nm from the edge of the AUV box

• Maintain a buffer zone around each mooring site
 – Buffer zone radius of 0.5 nm recommended

• Avoid submarine cables
 – Buffer zones should not overlap known cable routes

Plueddemann (WHOI)
Moored Array Micro-siting

Plueddemann (WHOI)