Marine Species Distribution Shifts Will Continue Under Ocean Warming

2017-05-31T11:20:57+00:00 May 31, 2017|
Changes in species distribution impact local fishing communities, resource management (Credit: Ra Boe)

(Click to enlarge) Changes in species distribution impact local fishing communities, resource management (Credit: Ra Boe)

Scientists using a high-resolution global climate model and historical observations of species distributions on the Northeast U.S. Shelf have found that commercially important species will continue to shift their distribution as ocean waters warm two to three times faster than the global average through the end of this century.

(From Science Daily)– Projected increases in surface to bottom waters of 6.6 to 9 degrees F (3.7 to 5.0 degrees Celsius) from current conditions are expected.

The findings, reported in Progress in Oceanography, suggest ocean temperature will continue to play a major role in where commercially and recreationally important species will find suitable habitat.

Sea surface temperatures in the Gulf of Maine have warmed faster than 99 percent of the global ocean over the past decade. Northward shifts of many species are already happening, with major changes expected in the complex of species occurring in different regions on the shelf, and shifts from one management jurisdiction to another. These changes will directly affect fishing communities, as species now landed at those ports move out of range, and new species move in.

“Species that are currently found in the Mid-Atlantic Bight and on Georges Bank may have enough suitable habitat in the future because they can shift northward as temperatures increase,” said lead author Kristin Kleisner, formerly of the Northeast Fisheries Science Center (NEFSC)’s Ecosystems Dynamics and Assessment Branch and now a senior scientist at the Environmental Defense Fund. “Species concentrated in the Gulf of Maine, where species have shifted to deeper water rather than northward, may be more likely to experience a significant decline in suitable habitat and move out of the region altogether.”

The researchers used bottom trawl survey data collected between 1968 and 2013 on the shelf to estimate niches for 58 demersal and pelagic species. A high-resolution global climate model known as CM2.6, developed by the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) in Princeton, New Jersey, was used to generate projections of future surface and bottom ocean temperatures across the region. The future temperatures were then used to project where marine species would find suitable habitat.

Read the full article here: https://www.sciencedaily.com/releases/2017/05/170527110628.htm?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+sciencedaily%2Fearth_climate%2Foceanography+%28Oceanography+News+–+ScienceDaily%29